Uso das equações generalizadas de pitzer para avaliação termodinâmica de gases

Autores

DOI:

https://doi.org/10.37293/sapientiae61.04

Palavras-chave:

Equação de estado, termodinâmica, Pitzer, fator de compressibilidade

Resumo

A equação do tipo Virial foi a base para a proposta da equação generalizada de Pitzer e que consideram as forças de interação molecular do gás, como preponderantes no comportamento mecânico do sistema. A equação do tipo Virial foi baseada na proposição de um polinómio cujo grau leva em consideração o número de moléculas que interagem entre si. A ausência de dados experimentais para a aplicação da equação do tipo Virial resultou na proposta de correlações generalizadas que possibilitam determinar os parâmetros termodinâmicos, a partir das propriedades críticas e reduzidas de cada gás, além do fator acêntrico que relaciona o tamanho das moléculas. Desta forma, este trabalho tem como objectivo avaliar o comportamento do factor de compressibilidade (Zi) de gases, em função da pressão e da temperatura, baseado num estudo numérico realizado a partir de um programa computacional, desenvolvido em linguagem C++, que usa a equação generalizada de Pitzer. Dos resultados obtidos, foi possível observar a similaridade qualitativa do comportamento e a dependência da pressão e da temperatura do sistema com o factor de compressibilidade. Para estas avaliações, concluiu-se que as forças de atração e repulsão moleculares são mais efetivas para sistemas com alta pressão, pois genericamente, para pressões menores que 200 bar, as forças atrativas são mais intensas e acima desta pressão, prevalecem as forças repulsivas, que resultam na liquefação dos gases. Concluiu-se, também, que o comportamento termodinâmico dos gases tem relação direta com o tipo e as características do gás avaliado.

Biografia do Autor

  • Antonio André Chivanga Barros, Instituto Superior Politécnico de Tecnologias e Ciências (ISPTEC)
    Prof. Dr. em Engenharia Quimica e com mais de 100 publicações em revistas indexadas...

Referências

Adacid, Yoshinori; Fijihara, Ichiro; Takamiya, Masaaki and Nakanishi, Koichiro (1988). Generalized equation of state for Lennard-Jones fluids—I. Pure fluids and simple mixtures. Fluid Phase Equilibria Journal. Volume 39. United State of America. (Pp. 1-38). DOI: www.doi.org/10.1016/0378-3812(88)80001-3.

Atkins, Peter e De Paula, Júlio (2012). Físico-Química. 9ª ed., Vol 1; Editora LTC. Brasil.

Beggs, H. Dale (1985). Gas Production Operations. Editora: Indra Bayu. United State of America.

Bertoli, Sávio L.; Kalvelage, Pollyana M. S., Albuquerque, Allan A. and Barros, António A. Chivanga (2017). (Vapor + Liquid) Equilibrium for Mixtures Ethanol + Biodiesel from Soybean Oil and Frying Oil; International Journal of Thermodynamics. Vol. 20. Turquia. (Pp. 159-164).

May, Peter and Rowland, Darren (2017). Thermodynamic Modeling of Aqueous Electrolyte Systems: Current Status. J. Chem. Eng. Data. 62, 9, United State of America (Pp. 2481-2495). DOI: www.doi.org/10.1021/acs.jced.6b01055.

Rosenberg, Yoav Oved; Metz, Volker and Ganor, Jiwchar (2011). Co-Precipitation of Radium in High Ionic Strength Systems: 1. Thermodynamic Properties of the Na-Ra-Cl-SO4-H2O System - Estimating Pitzer Parameters for RaCl2. Cosmochimica Acta Journal. Volume 75, Issue 19. Pages 5367-5818. doi: 10.1016/j.gca.2011.06.042. Alemanha.

Rowland, Darren and May, Peter M. (2015). Comparison of the Pitzer and Hückel Equation Frameworks for Activity Coefficients, Osmotic Coefficients, and Apparent Molar Relative Enthalpies, Heat Capacities, and Volumes of Binary Aqueous Strong Electrolyte Solutions at 25°C. J. Chem. Eng. Data. www.doi.org/10.1021/acs.jced.5b00161. United State of America.

Russel, John B. (2009); Química Geral. Volume I, 2a Edição. Editora Mkron Bokks. Brasil.

Simoes, Marcus C.; Hughes, Kevin J.; Ingham, Derek B.; Ma, Lin and Pourkashanian, Mohamed (2016). Estimation of the Pitzer Parameters for 1–1, 2–1, 3–1, 4–1, and 2–2 Single Electrolytes at 25°C. J. Chem. Eng. Data. 61, 7. United States of America (Pp. 2536-2554). DOI: www.doi.org/10.1021/acs.jced.6b00236.

Smith, Ness Van e Abbott, Hendrick C. (2007). Introdução à Termodinâmica da Engenharia Química. 7ª edição. Editora LTC. Brasil.

Van Wylen, Gordon J.; Sonntag, Richard E. e Borgnakke, Sontag Claus (2003). Fundamentos da Termodinâmica Clássica. Tradução da 4ª Edição. Editora Edgard Blücher. Brasil.

Downloads

Publicado

2020-07-07